705 research outputs found

    IL17A (interleukin 17A)

    Get PDF
    Interleukin-17A (IL17A), a characteristic cytokine produced by the T helper 17 cells (Th17 cells), can form either a homodimer or a heterodimer with IL17F.It is produced not only by Th17 cells, but also by cytotoxic CD8+ T cells (Tc17 cells), ?d T cells, invariant natural killer T cells (iNKT cells), lymphoid tissue inducer cells (LTi cells), and other hematopoietic and non-hematopoietic cells. During development, these cells exhibit flexible or plastic features distinct from those of Th1 and Th2 cells. IL17A plays important roles in the pathogenesis of autoimmune diseases and in the host defenses against bacterial and fungal infections.Expression of IL17A and its related factors, as well as the infiltration of IL17A-producing cells into the tumor microenvironment, has been implicated in anti-tumor or pro-tumor effects in various cancers

    Thermodynamic Studies on Non Centrosymmetric Superconductors by AC Calorimetry under High Pressures

    Full text link
    We investigated the non centrosymmetric superconductors CePt3_3Si and UIr by the ac heat capacity measurement under pressures. We determined the pressure phase diagrams of these compounds. In CePt3_3Si, the N\'{e}el temperature TNT_{\rm N} = 2.2 K decreases with increasing pressure and becomes zero at the critical pressure PAFP_{\rm AF} \simeq 0.6 GPa. On the other hand, the superconducting phase exists in a wider pressure region from ambient pressure to PAFP_{\rm AF} \simeq 1.5 GPa. The phase diagram of CePt3_3Si is very unique and has never been reported before for other heavy fermion superconductors. In UIr, the heat capacity shows an anomaly at the Curie temperature TC1T_{\rm C1} = 46 K at ambient pressure, and the heat capacity anomaly shifts to lower temperatures with increasing pressure. The present pressure dependence of TC1T_{\rm C1} was consistent with the previous studies by the resistivity and magnetization measurements. Previous ac magnetic susceptibility and resistivity measurements suggested the existence of three ferromagnetic phases, FM1-3. CacC_{\rm ac} shows a bending structure at 1.98, 2.21, and 2.40 GPa .The temperatures where these anomalies are observed are close to the phase boundary of the FM3 phase.Comment: This paper was presented at the international workshop ``Novel Pressure-induced Phenomena in Condensed Matter Systems(NP2CMS)" August 26-29 2006, Fukuoka Japa

    Coexistence of Ferromagnetism and Superconductivity in Noncentrosymmetric Materials with Cubic Symmetry

    Full text link
    This is a model study for the emergence of superconductivity in ferromagnetically ordered phases of cubic materials whose crystal structure lacks inversion symmetry. A Ginzburg-Landau-type theory is used to find the ferromagnetic state and to determine the coupling of magnetic order to superconductivity. It is found that noncentrosymmetricity evokes a helical magnetic phase. If the wavelength of the magnetic order is long enough, it gives rise to modulations of the order parameter of superconductivity, both in modulus and complex phase. At magnetic domain walls the nucleation of superconductivity is found to be suppressed as compared to the interior of ferromagnetic domains.Comment: 5 pages, 2 figure

    Strong-Coupling Superconductivity of CeIrSi3_3 with the Non-centrosymmetric Crystal Structure

    Full text link
    We studied the pressure-induced superconductor CeIrSi3_3 with the non-centrosymmetric tetragonal structure under high pressure. The electrical resistivity and ac heat capacity were measured in the same run for the same sample. The critical pressure was determined to be PcP_{\rm c} = 2.25 GPa, where the antiferromagnetic state disappears. The heat capacity CacC_{\rm ac} shows both antiferromagnetic and superconducting transitions at pressures close to PcP_{\rm c}. On the other hand, the superconducting region is extended to high pressures of up to about 3.5 GPa, with the maximum transition temperature TscT_{\rm sc} = 1.6 K around 2.52.72.5-2.7 GPa. At 2.58 GPa, a large heat capacity anomaly was observed at TscT_{\rm sc} = 1.59 K. The jump of the heat capacity in the form of ΔCac/Cac(Tsc){\Delta}{C_{\rm ac}}/C_{\rm ac}(T_{\rm sc}) is 5.7 ±\pm 0.1. This is the largest observed value among previously reported superconductors, indicating the strong-coupling superconductivity. The electronic specific heat coefficient at TscT_{\rm sc} is, however, approximately unchanged as a function of pressure, even at PcP_{\rm c}.Comment: This paper will be published in J. Phys. Soc. Jpn. on the August issue of 200

    Pressure Evolution of the Ferromagnetic and Field Re-entrant Superconductivity in URhGe

    Full text link
    Fine pressure (PP) and magnetic field (HH) tuning on the ferromagnetic superconductor URhGe are reported in order to clarify the interplay between the mass enhancement, low field superconductivity (SC) and field reentrant superconductivity (RSC) by electrical resistivity measurements. With increasing PP, the transition temperature and the upper critical field of the low field SC decrease slightly, while the RSC dome drastically shifts to higher fields and shrinks. The spin reorientation field HRH_{\rm R} also increases. At a pressure P1.8P\sim 1.8 GPa, the RSC has collapsed while the low field SC persists and may disappear only above 4 GPa. Via careful (P,H)(P, H) studies of the inelastic T2T^2 resistivity term, it is demonstrated that this drastic change is directly related with the PP dependence of the effective mass which determines the critical field of the low field SC and RSC on the basis of triplet SC without Pauli limiting field.Comment: 5 pages, 6 figures, to appear in Journal of the Physical Society of Japa

    Ferromagnetic Quantum Critical Fluctuations and Anomalous Coexistence of Ferromagnetism and Superconductivity in UCoGe Revealed by Co-NMR and NQR Studies

    Full text link
    Co nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies were performed in the recently discovered UCoGe, in which the ferromagnetic and superconducting (SC) transitions were reported to occur at TCurie3T_{\rm Curie} \sim 3 K and TS0.8T_S \sim 0.8 K (N. T. Huy {\it et al.}, Phys. Rev. Lett. {\bf 99} (2007) 067006), in order to investigate the coexistence of ferromagnetism and superconductivity as well as the normal-state and SC properties from a microscopic point of view. From the nuclear spin-lattice relaxation rate 1/T11/T_1 and Knight-shift measurements, we confirmed that ferromagnetic fluctuations which possess a quantum critical character are present above TCurieT_{\rm Curie} and the occurrence of ferromagnetic transition at 2.5 K in our polycrystalline sample. The magnetic fluctuations in the normal state show that UCoGe is an itinerant ferromagnet similar to ZrZn2_2 and YCo2_2. The onset SC transition was identified at TS0.7T_S \sim 0.7 K, below which 1/T11/T_1 of 30 % of the volume fraction starts to decrease due to the opening of the SC gap. This component of 1/T11/T_1, which follows a T3T^3 dependence in the temperature range of 0.30.10.3 - 0.1 K, coexists with the magnetic components of 1/T11/T_1 showing a T\sqrt{T} dependence below TST_S. From the NQR measurements in the SC state, we suggest that the self-induced vortex state is realized in UCoGe.Comment: 5 pages, 7 figures. submitted to J. Phys. Soc. Jpn. To appear in J. Phys. Soc. Jp

    Nonuniform Spin Triplet Superconductivity due to Antisymmetric Spin-Orbit Coupling in Noncentrosymmetric Superconductor CePt3_3Si

    Full text link
    We show that the nonuniform state (Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state) of the spin triplet superconductivity in noncentrosymmetric systems is stabilized by antisymmetric spin-orbit coupling even if the magnetic field is absent. The transition temperature of the spin triplet superconductivity is reduced by the antisymmetric spin-orbit coupling in general. This pair breaking effect is shown to be similar to the Pauli pair breaking effect due to magnetic field for the spin singlet superconductivity, in which FFLO state is stabilized near the Pauli limit (or Chandrasekhar-Clogston limit) of external magnetic field. Since there are gapless excitations in nonuniform superconducting state, some physical quantities such as specific heat and penetration depth should obey the power low temperature-dependences. We discuss the possibility of the realization of nonuniform state in CePt3_3Si.Comment: 8 pages, 6 figure

    Microscopic Coexistence of Ferromagnetism and Superconductivity in Single-Crystal UCoGe

    Full text link
    Unambiguous evidence for the microscopic coexistence of ferromagnetism and superconductivity in UCoGe (TCurie2.5T_{\rm Curie} \sim 2.5 K and TSCT_{\rm SC} \sim 0.6 K) is reported from 59^{59}Co nuclear quadrupole resonance (NQR). The 59^{59}Co-NQR signal below 1 K indicates ferromagnetism throughout the sample volume, while nuclear spin-lattice relaxation rate 1/T11/T_1 in the ferromagnetic (FM) phase decreases below TSCT_{\rm SC} due to the opening of the superconducting(SC) gap. The SC state was found to be inhomogeneous, suggestive of a self-induced vortex state, potentially realizable in a FM superconductor. In addition, the 59^{59}Co-NQR spectrum around TCurieT_{\rm Curie} show that the FM transition in UCoGe possesses a first-order character, which is consistent with the theoretical prediction that the low-temperature FM transition in itinerant magnets is generically of first-order.Comment: 5 pages, 5 figure

    Microscopic Mechanism and Pairing Symmetry of Superconductivity in the Noncentrosymmetric Heavy Fermion Systems CeRhSI3_3 and CeIrSi3_3

    Full text link
    We study the pairing symmetry of the noncentrosymmetric heavy fermion superconductors CeRhSi3_3 and CeIrSi3_3 under pressures, which are both antiferromagnets at ambient pressure. We solve the Eliashberg equation by means of the random phase approximation and find that the mixed state of extended s-wave and p-wave rather than the d+fd+f wave state could be realized by enhanced antiferromagnetic spin fluctuations. It is elucidated that the gap function has line nodes on the Fermi surface and the resulting density of state in the superconducting state shows a similar character to that of usual d-wave superconductors, resulting in the NMR relaxation rate 1/(T1T)1/(T_1T) that exhibits no coherence peak and behaves like 1/(T1T)T21/(T_1T)\propto T^2 at low temperatures
    corecore